

- AGN continuum flux changes are due to thermal fluctuations ΔT in accretion disc
- Blue filters correspond to inner radii, red filters to outer radii
- **Invert lightcurves** to get Δ*T(t,R)*

Lightcurves to ΔT maps

- Inversion is partly degenerate; requires additional constraints

slow ingoing radial structures/waves

Using AGN lightcurves to map accretion disc temperature fluctuations

J. M. M. Neustadt & C. S. Kochanek

Radius 60 $\mathbf{Red} = +\Delta T$ Blue = $-\Delta T$ Time

 ΔT solutions depending on smoothing param ξ

Assume $\Delta T/T$ is small, solution is smooth across radial/time bins

except with very high smoothing

ΔT maps conflict with lamppost model

- ΔT maps dominated by slow radial structures not possible in lamppost model; yet lamppost signal obviously present in lightcurves
- **Possible explanation: smoothing by blackbody kernel of disc** suppresses slow signals in ΔT more than fast lamppost signal
- Possible solution: slow radial structures could generate "disc-driven lamppost" resulting in lamppost signal with timescales that match observed AGN variability

scale

Paper details

Neustadt & Kochanek 2022, arxiv:2201.10565, MNRAS: 513, 1046

neustadt.7@osu.edu u.osu.edu/neustadt.7

Contact info

